光折变长周期波导光栅耦合器的设计和分析

张明任建文陈文乐孜纯 浙江工业大学理学院,浙江杭州 310023

摘要为了实现在一种稳定的材料上制作简单的光栅耦合器,提出了在钛扩散铌酸锂波导上制作光折变长周期光 栅耦合器的方案。利用有效折射率法和耦合模理论,确定了耦合器的结构参数,包括光栅周期为74.28 μm,两波导 的分开距离为8 μm以及100%耦合情况下光栅的最小长度为2.42 cm。分析了传输光谱,得到3 dB带宽为5.20 nm。模 拟结果表明,当光栅长度和偏移距离的容差分别为0.37 cm和0.21 cm时,耦合效率可以达到90%以上。该耦合器有 望应用于粗波分复用系统。

关键词 集成光学;长周期波导光栅耦合器;耦合模理论;光折变光栅;铌酸锂
 中图分类号 TN256 文献标识码 A
 doi: 10.3788/AOS201535.0313002

Design and Analysis of Photorefractive Long-Period Waveguide Grating Coupler

Zhang Ming Ren Jianwen Chen Wen Le Zichun

College of Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China

Abstract To obtain an easily made grating coupler with stable materials, a proposal to fabricate photorefractive long- period gratings coupler on Ti- diffused LiNbO₃ waveguide is presented. Structural parameters of the coupler can be determined by using effective index method and coupled-mode theory, including grating period as 74.28 μ m, separation distance of two waveguides as 8 μ m and the minimum grating length for 100% coupling as 2.42 cm. The transmission spectrum is analysed and the 3-dB bandwidth can reach 5.20 nm. The simulation results also show that coupling efficiency is above 90% when tolerance of grating length and offset distance is 0.37 cm and 0.21 cm, respectively. The coupler is expected to be used in coarse wavelength division multiplexing system.

Key words integrated optics; long-period waveguide grating coupler; coupled-mode theory; photorefractive grating; lithium niobate

OCIS codes 130.3120; 060.1810; 190.5330

1 引 言

长周期光栅 (LPG)耦合器在光通信领域中有着非常重要的应用^[1-3]。根据所用材料的不同,LPG耦合器 可以被分为长周期光纤光栅(LPFG)耦合器^[1-3]和长周期波导光栅(LPWG)耦合器^[4-5]。大多数已经实现的光 纤耦合器都是利用紫外(UV)光技术来获得光栅^[1-2]。此外,还有其他的技术也被用来制作 LPFG 耦合器,如利 用 CO₂激光器写入长周期光纤光栅^[3.6]。

然而,对于 LPFG 来说,其基底材料只能是现有的几种光纤,而光纤的结构和材料又只有固定的几种类型,不能灵活选择。与之相比,波导材料的种类丰富且结构多样,因此波导耦合器的设计更具灵活性,更易实现高集成度。2005年,Bai和 Chiang 理论研究了由两个相同且平行的 LPWG 构成的耦合器,并设计了基于

收稿日期: 2014-09-01; 收到修改稿日期: 2014-11-11

基金项目:国家自然科学基金(61007031)

作者简介: 张 明(1975—), 男, 博士, 副教授, 主要从事光通信器件方面的研究。E-mail: cim2046@zjut.edu.cn 本文电子版彩色效果请详见中国光学期刊网 www.opticsjournal.net

光学学报

硅聚合物薄膜的耦合器件^[4]。2009年,Zhang等^[5]设计了基于聚合物材料的电光(EO)可调谐LPWG耦合器。同年,Chow等^[7-8]在实验上实现了基于聚合物波导的耦合器。以上光栅的制作都是基于光刻、离子刻蚀、或者紫外光照射的方法。然而,聚合物材料对环境敏感、稳定性较低、耐化学腐蚀能力弱,这些缺点使其应用受到了限制。另外,上述用于制作LPFG或LPWG耦合器的方法,所需的实验设备非常昂贵,制作过程相当复杂且所需时间较长。

因此,有必要找到一个简单可靠、成本低的方法来制作LPWG耦合器,且使用的材料要有很好的稳定性。 铌酸锂(LiNbO₃)晶体正好可以满足上述要求,它不仅是一种在集成光学中广泛应用的良好的基底材料,同时 也是一种性能良好的光折变晶体^[9]。光折变效应可被用来制作布拉格光栅滤波器^[10]和LPWG滤波器^[11]。然而, 基于铌酸锂波导的LPWG耦合器还没有被报道过。

为了在一种稳定的材料上利用简单的方法制作出LPWG耦合器,本文提出了一种新方案,即在钛扩散 铌酸锂(Ti:LiNbO₃)波导上,利用振幅掩模板来制作光折变LPWG耦合器,该耦合器包含两个信道波导,且每 个波导上各有一个长周期光栅。利用有效折射率法和耦合模理论,可以求得耦合器的结构参数,以及分析 传输光谱。仿真结果显示,耦合器在光栅长度和两光栅的偏移距离上有足够大的容差,而且具有低串扰和 高温度稳定性的特点。与文献[11-12]中仅利用单个长周期波导光栅器件实现滤波功能相比,本文设计的双 光栅耦合器,通过将谐振波长耦合进输出波导可实现波分复用信号的解复用功能。

2 结构和制作方法

图1是振幅法制作LPWG耦合器的结构示意图。可通过二次扩钛的方法来制作波导[10-12]:以x切或y切

图 1 结构与制作示意图。(a)振幅掩模法制作光折变 LPWG 的结构示意图; (b)光折变 LPWG 耦合器的工作示意图; (c)波导在 x-y平面的截面示意图

Fig.1 Schematic diagrams of structure and fabrication. (a) Fabrication of photorefractive LPWG using the amplitude-mask method;(b) photorefractive LPWG coupler working schematic; (c) sectional view of the waveguide in the x-y plane

的铌酸锂晶体作为基底材料,在铌酸锂晶体的 x-z表面上镀一层钛膜,再利用热扩散法将钛扩散到基底中, 形成掺钛的平板波导;再利用光刻(用于形成波导形状)、镀条形钛膜和热扩散法进行第二次扩钛,获得沿z 轴方向的两个平行的、嵌入在平板波导内的单模波导。其中,平板波导作为包层。

如图 1(a)所示,在制得的钛扩散铌酸锂波导上,需利用振幅掩模板来制作光折变 LPWG。所需的振幅掩模板可以用金属铬制成^[7],它的周期和光栅周期相同。根据相位匹配条件^[4]:

$$\lambda_0 = (N_{co} - N_{cl})\Lambda, \tag{1}$$

式中 N_{ee}和 N_e分别为波导和包层模式的有效折射率。当响应波长为 1553 nm 时,光栅的周期Λ是 74.28 μm(周 期的计算将在后面给出)。

如图 1(a) 所示, 一束扩束的 532 nm 激光通过振幅掩模板后, 垂直照射到两条形波导表面上形成明暗相间的条纹。再通过铌酸锂晶体的光折变效应^[9], 在两平行的条形波导上形成光折变光栅, 如图 1(b) 所示。可通过利用 UV 胶与波导两侧端口相粘合的尾纤, 来实现光信号在波导内的输入(input)、输出(output)和分下(drop)。光纤到波导的传输损耗不大于 18%^[10]。

LPWG耦合器的工作过程如图1(b)所示。一个宽光谱信号输入到发射波导后,响应波长的光可以被耦合进接收(输出)波导;其余波长的光将会直接从输入波导中通过。

3 光折变LPWG耦合器的设计

3.1 光栅周期和工作模式

图 1(c)是 x-y平面的波导截面图,图中 d_x,d_y 分别为x,y方向上的钛扩散宽度和深度,d为两平行波导的间距, d_0 为第一次扩钛时的扩散深度, N_{air} 指空气折射率。在 1553 nm 波长条件下,铌酸锂基底的折射率 $n_b = 2.1372$,第一次扩钛后,折射率的改变量 $\Delta n_1 = 0.0017$,第二次扩钛后,折射率的改变量 $\Delta n_2 = 0.0126$ 。根据文献[11]中的有效折射率法,将平板波导作为波导芯,空气和铌酸锂基底作为包层,得到不同包层模式的有效折射率 N_{elo} 再将条形波导作为波导芯,空气和平板波导作为包层,计算得到导模的有效折射率 N_{eao} 将计算出的导模和不同包层模式的有效折射率,代入(1)式,可以得到响应波长 λ_0 和光栅周期 Λ 的关系,如图 2 所示,图中 $E_{10}, E_{11}, E_{12}, E_{13}$ 分别代表不同阶次的电磁场模式。

图 2 耦合到不同低阶包层模的相位匹配曲线,所用参数为: $d_0 = 7.3 \, \mu m$, $d_x = 7.8 \, \mu m$, $d_y = 4.9 \, \mu m$, $d=8 \, \mu m$,

 $N_{co} = 2.1515$, $N_{cl} = 2.1389$, $N_{air} = 1$

Fig.2 Phase-matching curves for couplings to different low order cladding modes with $d_0 = 7.3 \,\mu\text{m}$, $d_x = 7.8 \,\mu\text{m}$, $d_y = 4.9 \,\mu\text{m}$, $d_z = 4.9 \,\mu\text{m}$,

8 μ m, $N_{co} = 2.1515$, $N_{cl} = 2.1389$ and $N_{air} = 1$

由图 2 可知,当响应波长在 1550 nm 附近时, *E*₁₃的准 TE 模和准 TM 模的曲线几乎重合,这一点有利于设计偏振独立的器件。由于钛扩散引起的折射率增量不是很明显,根据弱导条件,TE和 TM 模的导模方程几乎相同,因此,在接下来的设计中,取 TM₁₃模作为工作模式。响应波长在 1553 nm 时其导模的有效折射率 *N*₆和 TM₁₃包层模的有效折射率 *N*₆分别为 2.146229 和 2.125322。此外由图 2 可得,光栅周期*Λ*=74.28 μm。

3.2 两波导的分开距离

如果在LPWG耦合器中存在倏逝场的耦合,将会导致传输光谱的非对称性和耦合串扰增加¹⁴。因此有

必要让这种倏逝场耦合尽可能地变小,这可以通过改变两波导的中心距离来实现。根据文献[13],该耦合器 可以等效为双矩形定向耦合器,因此倏逝场耦合系数C可表示为

$$C = \frac{2\Gamma_{y}\gamma_{1x}^{2}\gamma_{2x}^{2}}{\beta_{\text{TM}}k_{0}^{2}(N_{co}^{2} - N_{cl}^{2})(2 + \gamma_{2x}d_{x})}\exp(-\gamma_{2x}d),$$
(2)

式中 Γ_{y} 是y方向上TM模的功率限制因子,在此设置为1, γ_{1x} 、 γ_{2x} 分别为输入波导和接收波导在x方向上的导模传播常数,并且 γ_{1x} 、 γ_{2x} 满足如下方程:

$$\gamma_{1x}d_x = m\pi + 2\arctan\left(\frac{\gamma_{2x}}{\gamma_{1x}}\right), m = 0, 1, 2, \cdots,$$
(3)

$$\gamma_{2x}^{2} = k_{0}^{2} N_{co}^{2} - k_{0}^{2} N_{cl}^{2} - \gamma_{1x}^{2}, \qquad (4)$$

其中, $\beta_{TM}^2 = k_0^2 N_{co}^2 - \gamma_{1x}^2$ 为TM模的传播常数, $k_0 = 2\pi/\lambda_0$ 为自由空间波数, d_x 为7.8 µm^[11], d为两平行波导的间距。代入 $N_{co} = 2.146229$ 和 $N_{cl} = 2.125322$, 然后求解(2)~(4)式,可以计算出当两根条形波导之间间距 d大于7 µm时, 倏逝场耦合系数 C 趋近于零。在此 d取为8 µm。

3.3 100%耦合条件下光栅的最小长度

图 3 是两平行长周期波导光栅耦合器的示意图:光栅的周期为Λ,长度为L,两光栅在z方向上的偏移距 离为 ΔL。这里主要研究的是偏移距离 ΔL=0 的情况,即两波导光栅在z方向上完全平行对齐的情况。由于 光栅很弱^[10],可以看作是波导的一个微扰。因此,可以用一般的耦合模理论分析其模式耦合。

图3 两平行 LPWG 结构示意图

Fig.3 Schematic diagram of two parallel LPWGs

当两波导间的倏逝场耦合可以被忽略时,在LPWG耦合器中只发生两个耦合过程:一个是输入波导的导模和整个结构的包层模之间发生耦合,另一个是整个结构的包层模和输出波导的导模之间的耦合。

定义输入和输出波导的导模分别为 A(z) 和 Ā(z),包层模为 B(z)。根据文献[4],耦合模方程为

$$\frac{\mathrm{d}A}{\mathrm{d}z} = -\mathrm{j}\kappa B \exp(\mathrm{j}\delta z),\tag{5}$$

$$\frac{\mathrm{d}B}{\mathrm{d}z} = -\mathbf{j}\kappa A \,\exp(-\mathbf{j}\delta z) - \mathbf{j}\kappa\bar{A}\,\exp(-\mathbf{j}\delta z),\tag{6}$$

$$\frac{\mathrm{d}\bar{A}}{\mathrm{d}z} = -\mathrm{j}\kappa B \exp(\mathrm{j}\delta z),\tag{7}$$

式中 $\delta = (2\pi/\Lambda)(\lambda_0/\lambda - 1)$ 是相位失谐参数, κ 是光栅的耦合系数。以上方程的解为

$$A(z) = \frac{1}{2Q} \{ [Q \cos(Qz) - jS \sin(Qz)] \exp(jSz) + Q \} A(0) - j\frac{\kappa}{Q} \sin(Qz) \exp(jSz) B(0) + \frac{1}{2Q} \{ [Q \cos(Qz) - jS \sin(Qz)] \exp(jSz) - Q \} \bar{A}(0),$$
(8)

$$B(z) = -j\frac{\kappa}{Q}\sin(Qz)\exp(-jSz)A(0) + \frac{1}{Q}\exp(-jSz)[jS\sin(Qz) + Q\cos(Qz)]B(0) - j\frac{\kappa}{Q}\sin(Qz)\exp(-jSz)\overline{A}(0),$$
(9)

$$\bar{A}(z) = \frac{1}{2Q} \{ [Q \cos(Qz) - jS \sin(Qz)] \exp(jSz) - Q \} A(0) - j\frac{\kappa}{Q} \sin(Qz) \exp(jSz) B(0) + \frac{1}{2Q} \{ [Q \cos(Qz) - jS \sin(Qz)] \exp(jSz) + Q \} \bar{A}(0),$$
(10)

式中 $S = \delta/2$, $Q = \sqrt{S^2 + 2\kappa^2}$ 。

若输入条件为 A(0)=1, B(0)=0, Ā(0)=0, 则归一化功率为

$$|A(z)|^{2} = \frac{1}{4} \left\{ \left[\cos(Qz) + \cos(Sz) \right]^{2} + \left[\frac{S}{Q} \sin(Qz) + \sin(Sz) \right]^{2} \right\},\tag{11}$$

$$\left|B(z)\right|^{2} = \left[\frac{\kappa}{Q}\sin(Qz)\right]^{2},\tag{12}$$

$$\left|\bar{A}(z)\right|^{2} = \frac{1}{4} \left\{ \left[\cos(Qz) - \cos(Sz)\right]^{2} + \left[\frac{S}{Q}\sin(Qz) - \sin(Sz)\right]^{2} \right\}.$$
 (13)

接下来讨论实现100%耦合的条件。耦合器的耦合效率 η 可以定义为输出波导的输出功率与输入波导 的输入功率之比:

$$\eta = \frac{|\bar{A}(Z)|^2}{|A(0)|^2}.$$
(14)

将 $\delta = 0$ 和 $|\bar{A}(L)|^2 = |A(0)|^2 = 1$ 代入(11)~(13) 式可以得到响应波长下实现 100% 耦合条件为

$$\kappa L = \frac{(2n+1)\pi}{\sqrt{2}}, \quad n = 0, 1, 2, \cdots.$$
(15)

根据光栅的耦合系数[14]:

$$\kappa = \frac{k_0 (N_{\rm co}^2 - N_{\rm el}^2)}{2\pi c \mu_0} \int_0^{d_y} \boldsymbol{E}_0 \cdot \boldsymbol{E}_m \mathrm{d}y, \qquad (16)$$

式中 c 为光在真空中的传播速度, μ_0 为真空磁导率, E_0 和 E_m 分别为条形波导导模和包层模的归一化电场 分布矢量, $d_y = 4.9 \,\mu\text{m}$ 是 y 方向上的扩散深度。因此,可以计算得到耦合系数 $\kappa = 91.79 \,\text{m}^{-1}$ 。再根据(15) 式, 当n取0时,可以得到实现100%耦合时光栅最小长度 $L_{\min} = 2.42 \,\text{cm}$ 。

4 光折变 LPWG 的性能分析

4.1 传输光谱的模拟与分析

当 L_{min}=2.42 cm, d=8 μm(C=0)时, 两波导间的传输光谱如图 4(a)所示, 响应波长(δ=0)的耦合情况如图 4(b)所示。由图 4(a)可知, 输入波导的传输光谱表现出带阻的特点, 而输出波导表现出带通的特点。由图 4(b)可知, 响应波长的光在输入波导、包层、输出波导之间耦合, 最后在 100% 耦合长度时完全耦合到输出波导中。在 z=2.42 cm 时, 输入波导的归一化功率降为 0, 输出波导的归一化功率变为 1, 在 z=1.21 cm 时, 两波导的归一化功率相等。

图 4 传输光谱与响应波长。(a)光栅周期为 74.28 μm 且 *n*=0 时, 耦合到 TM₁₃包层模的传输光谱;(b)谐振波长条件下(λ=λ₀), 归 一化功率与传播距离的关系

Fig.4 Transmission spectra and response wavelength. (a) Transmission spectrum for coupling to TM₁₃ cladding mode with the grating pitch of 74.28 μ m at *n*=0; (b) relationship between normalized power and propagation distance at response wavelength ($\lambda = \lambda_0$)

在该光栅耦合器的设计中,取*n*=0,不仅是因为可以得到最小的光栅长度,同时也是为了获得更好的光 谱性能。由图 5(a)可知,当*n*等于1时,传输光谱出现了很明显的旁瓣效应。由图 5(b)可知,耦合过程循环 了不止一次,这会导致LPWG耦合器在实际应用中增加功率损耗。

图 5 传输光谱与归一化功率。(a) *n*=1时的传输光谱; (b) δ=0时, LPWG 耦合器归一化功率与传播距离的关(λ=λ₀) Fig.5 Transmission spectra and normalized power. (a) Transmission spectrum at *n*=1; (b) relationship between normalized power and propagation distance at response wavelength (λ=λ₀) when δ=0

4.2 LPWG 耦合器的 3 dB 带宽

为了求得输出波导中的 3 dB 带宽,将(15)式和 $\left|\bar{A}(L)\right|^2 = 0.5 代入(13)式,可以得到相位失谐参数 <math>\delta_{3 dB}$ 为

$$\delta_{3\,\mathrm{dB}} = \pm \frac{3.434}{(2n+1)L},\tag{17}$$

响应波长可以通过相位失谐参数来获得:

$$\lambda_{3 dB} = \frac{2\pi}{\Lambda} \cdot \lambda_0 / \left(\delta_{3 dB} + \frac{2\pi}{\Lambda} \right), \tag{18}$$

因此,3dB带宽满足:

$$\Delta \lambda_{3 dB} = 2(\lambda_0 - \lambda_{3 dB}) = 2\lambda_0 / \left[1 + \frac{2\pi}{3.434} \cdot \frac{(2n+1)L}{\Lambda} \right], \tag{19}$$

将参数 L_{min}和Λ代入(19)式,得到3 dB带宽为5.20 nm,可满足粗波分复用系统(CWDM)的应用需求。(19)式成 立的条件是:导模和包层模的有效折射率在谐振波长λ₀附近不变。

图 6 是当 n 取不同值时,长周期波导光栅耦合器中耦合长度 L 和 3 dB 带宽的关系。可以看出,当 n 从 0 到 1 变化时,3 dB 带宽急剧下降,同时耦合长度 L 增加。结合前面所讨论的光谱特点,n 取 0 是最好的选择。

图 6 当 n 取不同值时,长周期波导光栅耦合器中耦合长度 L 和 3 dB 带宽的关系

Fig.6 Relationship of 3 dB bandwidth and coupling length L on the different values of n

4.3 光栅长度容差的讨论

定义参数的容差等于其引起耦合效率下降到90%时该参数的改变量。根据(14)式,可以得到光栅长度L 与耦合效率η的关系,如图7所示。可得当参数L的容差为2.42 cm ± 0.37 cm 时,输入波导中90%以上的功率

将耦合进接收波导。

4.4 两光栅偏移量 ΔL 对耦合效率 η 的影响

由图 3 的实验示意图可知,在实际制作过程中,在z方向上两平行的LPWG可能没有完全对齐,比如具有 ΔL 的偏移距离。这里,可以用和以上相同的方法来分析参数 ΔL 的容差问题。由图 8 可知,当参数 ΔL 小于 0.21 cm (点 *a*)时,耦合效率是大于 90%的,这个条件在实验上可以很容易实现。此外,当 ΔL 增加到 1.38 cm(点 *b*)时,耦合效率有一个极小值 11.87 %,当 ΔL 增加到 2.07 cm(点 *c*)时,耦合效率又出现了一个极大值 66.52%。

图 8 响应波长 λ_0 条件下,耦合效率 η 与偏移距离 ΔL 的关系

4.5 串扰和温度对耦合器性能的影响

在耦合过程中,如果有其他波长也被耦合进输出波导,就会对信号光造成串扰。在 CWDM 系统的应用中,与1553 nm 相邻的两个波长分别为1530 nm 和1570 nm。在1553 nm 波长满足100%耦合的结构条件下,对1530 nm 和1570 nm 两个波长与 TM₁₃模式之间的耦合进行分析:根据(16)式,分别求得这两个波长的耦合系数: $\kappa_{1530} = 92.32 \text{ m}^{-1}, \kappa_{1570} = 91.40 \text{ m}^{-1}$,再进一步可求得两波长的耦合效率: $\eta_{1530} = 2.55\%, \eta_{1570} = 4.85\%$ 。结果表明,串扰不足以影响器件的工作性能。

此外,温度的变化也会引起光栅周期的变化,从而影响耦合的中心波长。铌酸锂晶体在沿着光轴c方向上的热膨胀系数 α_{33} =[(4.5±0.5)×10⁻⁶] K^{-1[10]},如果耦合器的工作温度范围为290 K~330 K,则 $\Delta\Lambda = \alpha_{33}\Lambda\Delta T =$ 13.37 nm±1.49 nm,相应的中心波长偏移量 $\Delta\lambda$ =0.28 nm±0.03 nm。

4.6 光束传播法(BPM)仿真分析

根据以上理论计算条件及结果,利用光学波导设计软件 OptiBPM 进行 BPM 算法仿真。仿真环境如下: 仿真矩形结构范围 x 方向-20~20 μm,y 方向-20~2 μm(其中 0~2 μm 为空气层),z 方向 0~24200 μm,仿真步 长Δx=0.25 μm,Δy=0.2 μm,Δz=2.5 μm,算法类型为 Semi-Vector TM,控制收敛的参数为-2。扩钛条件如下: 第一次扩钛时,钛条厚度为 20 nm,扩散宽度为 4 μm,扩散深度为 7.3 μm,扩钛后折射率为 2.1392;第二次扩 钛时,钛条厚度 80 nm,扩散宽度为 3.9 μm,扩散深度为 4.9 μm,扩钛后折射率为 2.1439。此外,如前所述,

Fig. 8 Variation of the coupling efficiency η at the resonance wavelength λ_0 with the offset distance ΔL

LiNbO₃基底折射率为2.1372,波导沿晶轴方向(z轴)。光栅波导结构的折射率分布模型如图9(a)所示,输出 和输入波导中心分别位于±7.93 μm处。

用 Matlab 将 BPM 软件仿真得到的透射率光谱数据进行归一化,得到输出端面处的透射率光谱和共振波 长如图 10 所示,其共振波长为 1553 nm,与理论计算结果相同,而且可见输入波导中的共振波长已经 100%耦 合进了包层中。从图 9(b)和(c)的输入、输出端面功率分布也可以看出,输入波导中的共振波长被完全耦合 进了包层,进而耦合到了输出波导中。

Fig.10 Normalization for simulated transmission spectra and response wavelength

与理论计算结果相比,一方面由于仿真中的波导并非理论计算时近似采用的矩形波导,因此对光信号

光学学报

限制不足,从而造成了全光谱信号在包层中的泄露,进而导致信号光带宽增加。另一方面,因为仿真时引入 了理论计算时没有考虑的光在包层中的传播损耗,造成了最终耦合进接收波导的效率不够高(约14.8%)。

5 结 论

提出了在铌酸锂晶体上利用振幅掩模法制作 LPWG 耦合器的方案。当使用 TM₁₃模式作为实验的包层 模式时,光栅的周期A=74.28 μm。响应波长为 1553 nm 时,导模和包层模的有效折射率分别为 2.146229 和 2.125322。两波导的间距为 8 μm 时,倏逝场耦合效率变为零,从而得到实现 100%耦合的最小长度为 2.42 cm。

此外,分析了两波导的传输光谱,计算出耦合器的3dB带宽为5.20nm。仿真结果表明,当光栅长度和 偏移距离的容差分别小于±0.37 cm和0.21 cm时,耦合效率可以达到90%以上。同时该器件还具有低串扰和 高温度稳定性的特点。

参考文献

- 1 V Grubsky, D S Starodubov, J Feinberg. Wavelength-selective coupler and add-drop multiplexer using long-period fiber gratings [C]. Optical Fiber Communication, 2000, 4: 28-30.
- 2 M J Kim, Y M Jung, B H Kim, *et al.*. Ultra-wide bandpass filter based on long-period fiber gratings and the evanescent field coupling between two fibers [J]. Opt Express, 2007, 15(17): 10855-10862.
- 3 Y Liu, K S Chiang, Y J Rao, *et al.*. Light coupling between two parallel CO₂ laser written long-period fiber gratings [J]. Opt Express, 2007, 15(26): 17645-17651.
- 4 Y Bai, K S Chiang. Analysis and design of long-period waveguide-grating couplers [J]. J Lightwave Technol, 2005, 23(12): 4363-4373.
- 5 Q Zhang, Y Liu, J Liao, *et al.*. Design and simulation of a narrow passband electro-optical tunable filter with band-pass and band-rejection output [J]. Journal of Infrared, Millimeter and Terahertz Waves, 2009, 30(9): 959-968.
- 6 Liang Lili, Liu Mingsheng, Li Yan, *et al.*. Method of one-time writing LPFG using high-frequency CO₂ laser [J]. Laser & Optoelectronics Progress, 2013, 50(9): 090503.

梁丽丽, 刘明生, 李 燕, 等. 使用高频 CO₂激光器一次写入长周期光纤光栅的方法 [J]. 激光与光电子学进展, 2013, 50(9): 090503. 7 C K Chow, K S Chiang, Q Liu, *et al.*. UV-written long-period waveguide grating coupler for broadband add/drop multiplexing [J].

- Opt Commun, 2009, 282(3): 378-381.
- 8 Y Bai, Q Liu, K P Lor, et al.. Widely tunable long-period waveguide grating couplers [J]. Opt Express, 2006, 14(26): 12644-12654.

9 L Arizmendi. Photonic applications of lithium niobate crystals [J]. Physica Status Solidi. A: Applied Research, 2004, 201(2): 253-283.

- 10 J Hukriede, D Runde, D Kip. Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides [J]. Journal of Physics. D: Applied Physics, 2003, 36(3): R1-R16.
- 11 M Zhang, W Chen, L Chen, et al.. Photorefractive long-period waveguide grating filter in lithium niobate strip waveguide [J]. Opt Quant Electron, 2014, 46(12): 1529-1538.
- 12 P R Hua, D L Zhang, P Edwin, *et al.*. Long period grating on strip Ti-LiNbO₃ waveguide embedded in planar Ti-LiNbO₃ waveguide [J]. IEEE Photon Technol Lett, 2010, 22(18): 1361-1363.
- 13 K Okamoto. Fundamentals of Optical Waveguides [M]. New York: Academic Press, 2006. 159-203.
- 14 Q Liu, K S Chiang, V Rastogi. Analysis of corrugated long-period gratings in slab waveguides and their polarization dependence [J]. J Lightwave Technol, 2003, 21(12): 3399-3405.

栏目编辑: 王晓琰